Imperial College
London

Lecture 7

Finite State Machine - Part 2

Peter Cheung
Department of Electrical & Electronic Engineering
Imperial College London

URL: www.ee.imperial.ac.uk/pcheung/teaching/ee2_digital
E-mail: p.cheung@imperial.ac.uk

PYKC 28 Oct 2019 E2.1 Digital Electronics

Lecture 7 Slide 1

Lecture Objectives

¢ To learn how to design a state machine to meet specific objectives

¢ To understand when two or more states are equivalent and can be merged
into a single state.

¢ To appreciate when it is necessary to synchronise a state machine’ s
inputs with the CLOCK

¢ To understand how a state machine is implemented using programmable
logic

¢ Learn how to specify a FSM in Verilog

PYKC 28 Oct 2019 E2.1 Digital Electronics Lecture 7 Slide 2

In the previous lecture, we examined how to analyse a FSM using state table, state
diagram and waveforms. In this lecture we will learn how to design a fininte state
machine in order to produce the desired output signals for control purposes.

Designing a Synchronous State Machines

¢ The state is the only way the circuit can remember what happened in the past.

¢ The number of states required equals the number of past histories that the
circuit needs to distinguish.

General Design Procedure

1. Construct a sequence of input waveforms that includes all relevant
situations.

2. Go through the sequence from the beginning. Each time an input changes,
you must decide:

» branch back to a previous state if the current situation is materially identical
to a previous one

« create a new state otherwise

3. For each state you must ensure that you have specified:
» which state to branch to for every possible input pattern
« what signals to output for every possible input pattern

PYKC 28 Oct 2019 E2.1 Digital Electronics Lecture 7 Slide 3

There are various ways that we can approach the FSM design problem. Here we will
assume that we start with input waveforms that includes all the relevant situations
that the circuit would need to go through. Another (better approach) is to consider
the FSM in terms of the algorithm that it implements —in a way that is more similar
to thinking about software.

Construct a state diagram to capture what you want to design, making sure that all
transitions and outputs are as intended.

Let us consider an example.

Universal State Machine Circuit Diagram

INPUTS j ; t j ; i: QOUTPUTS
CURRENT

lE’ STATE NEXT_STX{ ,

“R” denotes register bits: all with the same CLOCK

¢ Inputs can go directly into logic block if they are already synchronized with CLOCK.
Others must be passed through a register unless (i) they only affect one bit of the
Next_State and (ii) the logic block is hazard-free (i.e. cause no glitches).
Glitch-prone outputs must be deglitched if they go to a clock or to an asynchronous
set/reset/load input.
- For some state diagrams it is possible to eliminate output glitches by clever state
numbering.

+ Input synchronization and output deglitching add circuitry and increase input-to-output
delays. Avoid if unnecessary.

Combinational
Logic

PYKC 28 Oct 2019 E2.1 Digital Electronics Lecture 7 Slide 4

Here is a diagram showing a universal state machine. Not shown here is the clock
signal on all the registers.

Moore FSM

We generally use Moore FSM in our design on this course. Remember in Moore
machines, the output does not change in the middle of a clock cycle. Therefore the
output of the machine is determined by the current state of the FSM.

For Moore machines, the output is driven by a D-FF as shown in the slide.

Mealey FSM

For Mealey machines, the output is dependent on both the current state of the FSM

and the input signals. Therefore a Mealey machine output can change in the middle
of a clock cycle.

We prefer to use Moore FSM in our course because its output do not have glitches.
In contract, a Mealy FSM output is produced directly from the combinational circuits
without going through a D-FF. Therefore it may contain glitches.

One disadvantage of a Moore FSM is that the output may have one cycle delay
(because of the output D-FF).

Example 1: Design a Noise Pulse Eliminator (1)

+ Design Problem: Noise elimination circuit a=...00
- We want to remove pulses that last only one clock cycle b= ...001
c=...11

N LU LI

OUT [ideal] 1 . d=...110
& Use letters a,b,... to label states; we .

0
choose numbers later. @ 1

¢ Decide what action to take in each) 6 0 a 0
state for each of the possible input 0 1
conditions. 1

0
. . . 1
¢ Use a Moore machine (i.e. output is 3) 6 0 6 6

constant in each state). Easier to
design but needs more states & adds

output delay. @

PYKC 28 Oct 2019 E2.1 Digital Electronics Lecture 7 Slide 5

Design a Noise Pulse Eliminator (2)

1. If IN goes high for two (or more) clock cycles then OUT must go high, whereas if it goes

high for only one clock cycle then OUT stays low. It follows that the two histories “IN low
for ages” and “IN low for ages then high for one clock” are different because if IN is high
for the next clock we need different outputs. Hence we need to introduce state b.

2. If IN goes high for one clock and then goes low again, we can forget it ever changed at all.

This glitch on IN will not affect any of our future actions and so we can just return to state
a.
If on the other hand we are in state b and IN stays high for a second clock cycle, then the
output must change. It follows that we need a new state, c.

3. The need for state d is exactly the same as for state b earlier. We reach state d at the end

of an output pulse when IN has returned low for one clock cycle. We don’t change OUT yet
because it might be a false alarm.

4. If we are in state d and IN remains low for a second clock cycle, then it really is the end of

the pulse and OUT must go low. We can forget the pulse ever existed and just return to

state a.
Each state represents a particular history that we need to

We will now consider the design of a FSM to do some defined function:

Design a circuit to eliminate noise pulses. A noise pulse (high or low) is one that lasts
only for one clock cycle. Therefore, in the waveform shown above, IN goes from low
to high, but included with some high and some low noise pulses. The goal is to clean
this up and produce ideally the output OUT as shown.

Here we label the states with letters a, b, c Starting with a when IN =0, and we
are waiting for IN -> 1. Then we transit to b. However, this could be a noise pulse.
Therefore we wait for IN to stay as 1 for another close cycle before transiting to c
and outputa 1. If IN goes back to zero after one cycle, we go to a, and continue to
output a 0.

Similar for state ¢, where we have detect a true 1 for IN. If IN -> 0, we go to d, but
wait for another cycle for IN staying in 0, before transiting back to state a.

Therefore this FSM has four states. Note that in reality, OUT is delayed by ONE clock
cycle. There is in fact no way around this — we have to wait for two cycles of IN=0 or
IN=1 before deciding on the value of OUT.

distinguish from the others:
state a: IN=0 for >1 clock state b: IN=1 for 1 clock
state ¢: IN=1 for >1 clock state d: IN=0 for 1 clock
PYKC 28 Oct 2019 E2.1 Digital Electronics Lecture 7 Slide 6

This example illustrates how each state represents a particular history that needs to
be recorded.

This slide reiterates who we arrives at the state diagram and what each state means.

Implementing the FSM (1)

+ Assign each state a unique binary number. Your choice affects circuit complexity but
the circuit will work correctly whatever choice you make.
+ State Assignment Guidelines (manual assignment):

- Any outputs that depend only on the state should if possible be used as some of
the state bits. (e.g. binary counter — outputs & states are the same.)

- Assign similar (=most bits the same) numbers to states (i) that are linked by
arrows, (ii) that share a common destination or source, (iii) that have the same
outputs.

- If two subsets of the state diagram have identical transitions with identical input
conditions, they should be numbered so that corresponding states have similar
numbers. -

+ Example: State Numbers: S1,S0
Inputs/Outputs: INOUT

¢ S1is the same as OUT (from the first guideline)
¢ All states linked by arrows differ in only one bit (from the second guideline)

PYKC 28 Oct 2019 E2.1 Digital Electronics Lecture 7 Slide 7

Before mapping the state diagram to hardware, we need to perform state encoding
— giving each state a unique binary value. For the noise eliminator, we have four
states and therefore if we use binary encoding, we need two state bits to encode all
four states. Here we assign values S1:5S0 of 00, 01, 11 and 10 to states a, b, cand d
respectively.

Note that you could assign ANY binary number to any state — and the implemented
FSM will work. However, different state encoding will result in different
implementations, affecting the complexity of the digital logic.

In the assignment above, we deliberating make S1 the same as OUT — this simplifies
the output logic.

We deliberately make all states linked by arrows only having one bit changing
(hence 01 -> 11). This tends to simply the transition logic and reduce glitches.

Implementing the FSM (2)

+ Now we can draw a Karnaugh map (really three State Numbers: S1.S0
K-maps in one) giving NS1, NSO and OUT in Inputs/Outputs: INJOUT
terms of S1, SO0 and IN: 0 1

NS1.NS0/OUT
S1.S0 | IN=0 IN=1

00 00/0 01/0
01 00/0 11/0

51.so| IN=0 IN=1

11 10/1 11/1 00 0 0
10 00/1 11/1 01 0 1
11 1 1
10 0 1
PYKC 28 Oct 2019 E2.1 Digital Electronics Lecture 7 Slide 8

Once we have completed state encoding, we can fill in the state transition table with
binary values for the current state values S1:0, the next state values NS1:0 and the
output OUT. This is shown on the left.

If you were to design this FSM by hand, you would need to generate Boolean
equations for the next state values NS1 and NS2, and the output signal OUT.

You may even use K-map to perform Boolean simplification.

Implementing the FSM (3)

+ From this we can derive Boolean expressions for
the combinational logic block:

[NST=IN-(S1+50)+S1-S0 NSO=IN ___ OUT =5]| NS1.NS0/OUT
N S1.50 | IN=0 IN=1
cLOCK 00 00/0 01/0
“ J Combinational out 01 00/0 11/0
NST iy 131 Logic NSt 11 1011 11/1
NSO S0 NSO 10 00/1 11/1

One-hot encoding

[]
IN L U U I
S1:0 o 1 0 :1:3|2: 3 'a} 3 .zo:no
I

OUT [ideal]
OUT [actual]

PYKC 28 Oct 2019 E2.1 Digital Electronics Lecture 7 Slide 9

Instead of using binary encoding, which works very well in the noise
eliminator example, an alternative is to use one-hot encoding.

In one-hot encoding, each state is encode with a binary value that has a
single ‘1’ bit and the rest of the binary variables are ‘0’.

Therefore, for the noise eliminator SSM, the states could be encoded as:
a=0001 b=0010 <¢=0100 d=1000

Using one-hot encoding would use MORE state registers. For N-states, we
would need to use N flipflops.

The advantage is that the state transition and output logic could be much
simpler than using binary encoding. There is no longer need for logic to
decode the binary number.

Since FPGAs are a register-rich architecture (each FF is preceded by a small
block of logic in the form of a 4-LUT or an ALM), using one-hot encoding
could result in simpler and fast SSM implementations.

Now we can derive the Boolean express for NS1, NSO and OUT in the usual way.

Since in general FPGA architecture, the logic elements can handle many inputs (at
least 4 input signals) and is much more complex than a simple logic gate,
implementing the Boolean equation for NS1 would only use ONE logic block.

Furthermore, each logic element also include its own registers. So implementing
FSM in FPGAs is easy and efficient.

Note that the actual output waveforms shows that OUT has a one clock cycle delay.

PYKC 28 Oct 2019 E2.1 Digital Electronics Lecture 7 Slide 10

In implementing FSMs using FPGAs, we often use a form of state encoding different
from simple binary encoding. It is known as one-hot encoding.

With one-hot encoding, only one-bit in the state value is “hot” (i.e. set to ‘1’), and
all the other bits are “cold” (i.e. reset to ‘0’).

Using one-hot encoding matches the FPGA architecture well. Each FPGA logic
element contains a combinational logic module and one or more registers.
Therefore FPGA is a register-rich architecture.

As an exercise, please implement the noise eliminator using one-hot encoding
instead of binary encoding as we have in the previous slides by hand (i.e. without
using CAD tools). You will appreciate why one-hot encoding is efficient with FPGAs.

10

Eliminator design in Verilog

moduTe eTiminator (out, in, clk, rst);

outpe ous
output out; Declarations

define states one-hot encoding
parameter S_A = 4°b0001; S_B = 4 b0010;
parameter S_C = 4 100; S_D = 4'b1000;
parameter NSTATAE = 4;

reg [NSTATE-1:0] state;

Eliminator simulation in Quartus (RTL)

specify state machine transition Output logic
always @ (posedge clk)
1'1¥ (rst==1"bl) ™ always @ (*)
state <= S_A; case (state)
else S_A: out = 1°b0;
case (state) S_B: out = 1'b0;
Ss_A: if (in==1'bl) state <= S_ S_C: out = 1°bl;
s_B: if @ state <= S_ S_D: out = 1'bl;
<= S_A; endcase
s_c: if state <= S_D:
s_p: if state <= S_C; endmodule
<= S5_A;
default: ; do nothing
endcase
PYKC 28 Oct 2019 E2.1 Digital Electronics Lecture 7 Slide 11

[eliminator /ck St0
[eliminator fin St0
Jeliminator frst St0

[eliminator /state
[eliminator fout

PYKC 28 Oct 2019 E2.1 Digital Electronics Lecture 7 Slide 12

Instead of manually designing a state machine, we usually rely on Verilog
specification and synthesis CAD tools such as Altera’s Quartus software.

Here we use an EXPLICIT reset signal rst to put the state machine in a known state.
We also use one-hot instead of binary encoding of the states. This is specified in the
parameter block.

Using parameter block to give a name to each of the states has many benefits: the
Verilog design is much easier to read; you can change state assignment values
without needing to change any codes. In general, parameter block allows you to use
symbols (names) to replace numbers. This makes the code easier to read and easier
to maintain, and it is a good habit to get into.

The state variable declaration reg [NSTATE-1:0] is used here to show that you there
are 4 states (S_AtoS_D).

When specifying FSM in Verilog, you should following the following convention:
eUse always @ (posedge clk) block to specify the state transition. Note that we use
the <= assignments (non-blocking) in this always block because you are responding
to clock edges.

eUse a separate always @ (*) block to specify the the output logic. We use normal
assignments (blocking) here because this is actually a combinational logic block, not
sequential circuit.

1

If you enter this Verilog description into Quartus and simulate the circuit, you will
see the waveform as shown in this timing diagram as expected. Note that the actual
waveform for out is NOT the ideal waveform, but is delayed by one clock cycle.

12

Example 2 — A pulse generator

¢ Design a module pulse_gen.v which does the following: on each positive edge of the
input signal IN, it generates a pulse lasting for one period of the input clock.

2/ck

2 |sto

Ypuse |0

2/state o
—

Now ()00 ps

WAIT_LOW T IDLE
IN_HIGH

¢ Needs THREE states (not two).

PYKC 28 Oct 2019 E2.1 Digital Electronics Lecture 7 Slide 13

Let us now consider another example, which will appear in the Lab Experiment later.
You are required to design a pulse generator circuit that, on the positive edge of the
input IN, a pulse lasting for one clock period is produced.

The state diagram for this circuit is shown here. There has to be three state: IDLE
(waiting for IN to go high), the IN_HIGH state when a rising edge is detected for IN,
and WAIT_LOW state, where we wait for the IN to go low again.

Shown here is the timing diagram for this design. This module is very useful. It
effective detects a rising edge of a signal, and then produces a pulse at the output
which is one clock cycle in width.

13

Pulse Generator in Verilog

¢ Design a module pulse_gen.v which does the following: on each positive edge of the
input signal IN, it generates a pulse lasting for one period of the input clk.

N
specify state machine transition
always @ (posedge cl1k)
case (state)
AIT_LO! IDLE: if (in==1'bl) state <= IN_HIGH;
pulse=0 IN_HIGH: if (in==1'bl) state <= WAIT_LOW;
. _else state <= IDLE;
WAIT_LOw: if (in==1"b0) state <= IDLE;
default: ; do nothing
endcase
module pulse_gen (pulse, 1n, clk); specify output combinational Tlogic
input in, clk; always @ (*)
output pulse; case (state) L
IDLE: pulse = 1'b0;
reg [1:0] state; IN_HIGH: pulse = 1'bl;
reg pulse; WAIT_LOW: pulse = 1'b0;
. . endcase
define states binary encoding
parameter IDLE = 2'b00;
parameter IN_HIGH = 2 h01; endmodule
parameter WAIT_LOW = 2'bl10;
initial state = IDLE;
initial pulse =1 H
PYKC 28 Oct 2019 E2.1 Digital Electronics Lecture 7 Slide 14

This FSM has three states: IDEL, IN_HIGH and WAIT_LOW. Mapping the state diagram to
Verilog is straight forward.

1.The declaration part is standard. This is followed by the parameter section.. Here we use
straight forward binary number assignment, and therefore we have two state bits (maximum
four states, but only three are used).

2.The initial section is for initialization. Normally for a FSM design, it is best to include a
RESET input signal which, when asserted, will synchronously put the state machine to an
initial state. Here we are using a nice feature of FPGAs, which allows the digital circuits to be
initialised to any states during CONFIGURATION (i.e. when downloading the bit-stream).
When you configure the FPGA, the registers used for state[1:0] will be loaded with the value
2’b00The actual state machine is specified with the always @ block.

3.The first line defines the default output value for pulse is 0. This ensures that pulse is
always defined.

4.The case statement is the best way to specify a FSM. Each case specifies both the
conditions for state transitions and the output. It isimportant to note that state and output
specified for each CASE are the next state and next output. For example, if the FSM is in the
IDLE state and in==1'b1 on the next positive edge of clk, the FSM will go to state IN_HIGH
and make pulse go high.

5.The <= assignment specifies that the changes will occur simultaneously when the always @
block is exited.
6.Finally, the default section will catch all unspecified cases. In this case, default section is

empty (i.e. by default, do nothing). YOU MUST ALSO INCLUDE THE DEFAULT SECTION IN
YOUR FSM DESIGN.

14

Example 3: delay module (1)

¢ Here is a very useful module that combines a FSM with a counter.
¢ |t detects the rising edge on trigger, then wait (delay) for n sysclk cycles before

producing a 1-cycle pulse on time_out.

¢ The external port interface for this module is shown below.

bit number, or a maximum of 1023 sysclk cycles delay.

We assume that n is a 10-

Design Name : delay
File Name : delay.v

delay Function : A rising edge on trigger input is delayed by n clock
hen produces a one cycl

5e at output

N —— time_out |module
—> sysclk, Clock input to_the design
) trigger, Initial the delay time_out signal
trigger n, a 10 bit time constant value
time_out goes high for 1 sysclk after n cycles

sysclk 5

parameter BIT_SZ = 10;

------------- Required reg declard,,_____________ pefine ports
reg [BIT_Sz-1:0] count; input sysclk, trigger;
reg time_out; input [BIT_SZ-1:0 n;
output Time_out;

Define number of bits in delay counter

------------ The main module is a FsM WTUIT empecUed CoUNTEr =
reg [1:0]state;
parameter IDLE = 2'b0O, COUNTING = 2 'b01;
parameter TIME_OUT = 2 'bl0, WAIT_LOW = 2'bll;

initial state = IDLE; initialise the Fsm
initial count = n - 1'b1;

PYKC 28 Oct 2019 E2.1 Digital Electronics

Lecture 7 Slide 15

Example 3: delay module (2)

output: time_out

always @ (posegge sysclk)

case (state

IDLE: if (trigger==1'bl)

COUNTING:

TIME_OUT:

state <= COUNTING;
if (count==0) begin
count <= n - 1 bl;
state <= TIME_OUT;
end
else

count <= count - 1°

if (trigger==1'b0)
state <= IDLE;
else
state <= WAIT_LOW;

state transition part

WAIT_Low: if (trigge
state <= IDLE;
default: ;// do nothing
endcase
always @ (%)
case (state)
(count = 0) IDLE: time_out
COUNTING: time_out
trigger TIME_OUT: time_out
WAIT_LOW: time_out
default:
endcase
endmodule end of Module counterl6
PYKC 28 Oct 2019 E2.1 Digital Electronics Lecture 7 Slide 16

Finally, here is a very useful module that uses a fourZ-state FSM and a counter. It is the
combination of the previous example with a down counter embedded inside the FSM.

The module detects a rising edge on the trigger input, internally counts n clock cycles, then
output a pulse on time_out. This effectively delay the trigger rising edge by n clock cycles.

Here we have the port interface and the declaration parts of the Verilog design.

15

The FSM state diagram is very similar to that for pulse_gen.v. However we have four
states instead of three. Go through this yourself and make sure that you understand

how this works.

16

